On the Classification of Resonance-free Anosov Z Actions

نویسندگان

  • BORIS KALININ
  • VICTORIA SADOVSKAYA
چکیده

We consider actions of Z, k ≥ 2, by Anosov diffeomorphisms which are uniformly quasiconformal on each coarse Lyapunov distribution. These actions generalize Cartan actions for which coarse Lyapunov distributions are onedimensional. We show that, under certain non-resonance assumptions on the Lyapunov exponents, a finite cover of such an action is smoothly conjugate to an action by toral automorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classification of Resonance-free Anosov Z Actions

We consider actions of Z, k ≥ 2, by Anosov diffeomorphisms which are uniformly quasiconformal on each coarse Lyapunov distribution. These actions generalize Cartan actions for which coarse Lyapunov distributions are onedimensional. We show that, under certain non-resonance assumptions on the Lyapunov exponents, a finite cover of such an action is smoothly conjugate to an action by toral automor...

متن کامل

The Katok-spatzier Conjecture and Generalized Symmetries

Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.

متن کامل

Spatzier’s Conjecture and Generalized Symmetries

Within the smooth category, an intertwining is exhibited between the global rigidity of irreducible higher-rank Z Anosov actions on T and the classification of equilibrium-free flows on T that possess nontrivial generalized symmetries.

متن کامل

Global Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds

An Anosov diffeomorphism f on a torus T is affine if f lifts to an affine map on R. By a classical result of Franks and Manning, any Anosov diffeomorphism g on T is topologically conjugate to an affine Anosov diffeomorphism. More precisely, there is a homeomorphism φ : T → T such that f = φ◦g◦φ−1 is an affine Anosov diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is...

متن کامل

Local rigidity of certain partially hyperbolic actions of product type

We prove certain rigidity properties of higher-rank abelian product actions of the type α × Id N : Z κ → Diff(M × N), where α is (TNS) (i.e. is hyperbolic and has some special structure of its stable distributions). Together with a result about product actions of property (T) groups, this implies the local rigidity of higher-rank lattice actions of the form α × Id T : → Diff(M × T), provided α ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007